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Abstract

Identifying scientific breakthroughs is of great significance for research evaluation and
policy-making. Thus, it has been the central focus in the realm of science. This study lev-
erages a new dataset of Nobel and Lasker prize-winning publications and employs the
eXtreme Gradient Boosting (XGBoost) algorithm to establish a predictive model for scien-
tific breakthroughs. The Input-Process-Output-Outcome (IPOO) framework serves as the
fundamental perspective to deconstruct the potential factors associated with breakthroughs
into four dimensions: input, process, output, and outcome. We demonstrate that XGBoost
achieves the best predictive accuracy among traditional machine learning models, with F1
scores of 0.613 and 0.611 in Dataset 1 and Dataset 2, and AUC values of 0.898 and 0.880,
respectively. Large language models (LLMs), used as additional baselines, exhibit higher
recall scores on both datasets. In addition, we utilize the SHapley Additive exPlanations
(SHAP) approach to enhance the interpretability of our model, enabling a deeper under-
standing of how features influence the prediction of scientific breakthroughs, which has
been overlooked in previous research. This study introduces an explainable machine learn-
ing approach for tracing breakthrough research in science with bibliographic information,
yielding valuable insights into future research.
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Introduction

It is generally acknowledged that breakthroughs at the cutting edge of science are linked
to exceptional innovation (Hayrynen, 2007). Although such discoveries may be few in
number, they have the potential to challenge the established paradigm and cause radical
changes in our perception of the world. These discoveries are also recognized as crucial
for further scientific progress and may pave the way for technological applications (Kuhn,
1970; Winnink et al., 2019). Thus, facilitating and fostering scientific breakthroughs has
attracted increased attention in various countries (Héyrynen, 2007; Wang et al., 2021).

The identification of scientific breakthroughs is of great interest to a wide range of
scholars in the realm of science. The availability of harvest databases with bibliographic
data from publications makes it possible to use bibliographic information to quantitively
detect such discoveries (Min et al., 2021a; Winnink & Tijssen, 2015; Winnink et al., 2019).
Specifically, existing literature has used citation count-based models (Ponomarev et al.,
2014a, 2014b; Schneider & Costas, 2017; Winnink et al., 2019), citation network-based
models (Funk & Owen-Smith, 2017; Min et al., 2021a, 2021b; Wang et al., 2023a; Wei
et al., 2023; Wu et al., 2019), and novelty indicators (Savov et al., 2020; Wang et al., 2017)
to identify scientific breakthroughs. However, these methods mainly rely on the ex-post
measure of impact and are controversial due to a concentration on a specific property of
breakthroughs. For example, citation-based analysis is biased as it fails to comprehensively
assess the innovativeness of scholarly publications (Xu et al., 2022c). In addition, prior
studies have shown considerable inconsistency in the criteria for defining scientific break-
throughs. Some scholars have used the quantitative approach to define breakthroughs, such
as operationalizing breakthroughs as the top 0.1%, 1%, or 10% of highly cited publications.
Others have used peer review results to determine breakthroughs, as noted by Schneider
and Costas (2017). They contended that “What eventually is considered breakthrough
research is a matter to be decided by peers” (p. 711). However, previous studies mainly
relied on a limited dataset consisting solely of Nobel prize-winning publications. Unlike
previous research, we consider discoveries that have won significant prizes as scientific
breakthroughs, including the Nobel Prize and the Lasker Prize. It could complement the
larger sample of scientific breakthroughs compared to using only examining Nobel prize-
winning papers.

This paper aims to predict major discoveries based on peer review using machine learn-
ing methods. This approach enhances prior research in two unique ways. First, this study
represents the first attempt to adopt the Input-Process-Output-Outcome (IPOO) framework
as a fundamental lens for predicting scientific breakthroughs. This framework systemati-
cally deconstructs potential factors into input, process, output, and outcome dimensions.
It also enables a more structured and interpretable foundation for breakthrough forecast-
ing. Second, while machine learning methods have advanced researchers’ capability to pre-
dict innovativeness, it introduces limitations from the inherently “black box” nature of the
prediction process, which hinders interpretability. Therefore, the machine-learning-based
SHapley Additive exPlanations (SHAP) approach is used in our study to decode and eluci-
date the influence of features related to scientific breakthroughs.
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Review
Definitions and characteristics of breakthroughs

Kuhn (1970) theorized that scientific progress does not follow a cumulative unified path,
but follows nonlinear laws. Specifically, two states of “normal” science and “revolution-
ary” science appear alternatively. Scientific advancements are not solely dependent on
numerous small, incremental advances that are carried out within existing and accepted
pathways. They are also driven by occasional major discoveries that alter the existing
paradigm, leading to dramatic changes in science. Breakthroughs are usually aligned with
these latter discoveries, with scientists using synonyms such as “revolutionary discoveries”
(Kuhn, 1970), “transformative research” (Chen et al., 2009) or “disruptive research” (Wu
et al., 2019). The lack of a generally accepted definition for breakthroughs is illustrated by
these varied synonyms. To date, no consensus has been reached on what constitutes such
research, and the definition throughout the scientific community is not specific.

The concept of scientific breakthroughs has been interpreted in various ways. For exam-
ple, Winnink (2017) stated that breakthroughs are discoveries that have a major impact on
science. Breakthroughs refer to advancements that are highly useful to numerous scientists
in addressing scientific problems (Hollingsworth, 2008). Based on this view, an essential
feature of scientific breakthroughs is a study’s “major impact,” which has the potential to
influence subsequent studies (Wang et al., 2023a) and contribute to further progress in sci-
ence. However, remarkably, breakthroughs also have an impact that goes beyond its own
domain to impact other fields of science. Schneider and Costas (2017, p. 711) indicated
that breakthroughs lead to “important citation spread over its own field and also other
fields of science.”

Existing research has also indicated that breakthroughs do not follow existing findings
and must “have a genuine relevance on its own” (Schneider & Costas, 2017, p. 711). This
relevance usually requires novel approaches (Uzzi et al., 2013; Wang et al., 2017), or a
new way of thinking about a problem (Hollingsworth, 2008). The distinctive nature may
consequently lead to “reorientations of established research streams onto new frontiers”
(Wang et al., 2023a, p. 3), or “dramatically change the direction of future research” (Wei
et al., 2023, p. 1). These views emphasize “originality” as the key characteristic that distin-
guishes breakthroughs from non-breakthroughs. Wang et al., (2023a, p. 3) also mentioned
that breakthroughs are innovative discoveries that “make an original contribution to the
knowledge system of science.” This new knowledge plays a key role in paving the way for
a new avenue of exploration.

Prediction of scientific breakthroughs

In bibliometrics and scientometrics, much attention has been paid to predicting scien-
tific success such as predicting the impact of a paper (Hu et al., 2023; Wang et al., 2019a,
2019b), the success of a scientist (Daud et al., 2015; Kumar et al., 2023), the success of
research collaborations (Hiickstddt, 2023), and research grants (Tohalino & Amancio,
2022). In this study, we focus on scientific breakthroughs and review related literature
using bibliometrics and machine learning methods.
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Predicting scientific breakthroughs using bibliometric methods

Scientific breakthroughs are usually studied quantitatively. Using bibliometric information
to identify breakthroughs has been an aim for decades. The three mainstream approaches
are citation count-based, citation network-based, and novelty-based methods. One way to
understand breakthrough research is to characterize it as a highly cited discovery (Mukher-
jee et al., 2017; Schilling & Green, 2011; Uzzi et al., 2013). It is based on the assumption
that followers who are inspired by or build on previous work acknowledge its value by
citing it, and the number of citations implies its impact on the scientific community (Lee
et al., 2015; Mugabushaka et al., 2020). Previous research has modeled predictive citation
count-based approaches to detect breakthroughs (Ponomarev et al., 2014a, 2014b; Schnei-
der & Costas, 2017; Winnink et al., 2019). For example, Ponomarev et al. (2014b) fit linear
and nonlinear models to citation data based on early citation counts (at the 6th, 12th, and
24th months) to predict later citation counts in the fifth year. The predicted values were
compared with quantile thresholds to determine whether a paper could be classified as a
breakthrough.

Detecting scientific breakthroughs from a knowledge structure perspective has been of
interest to scholars. The hypothesis is based on the fact that breakthrough discoveries are
linked to dramatic, structural changes in the existing body of knowledge in science. The
potential value of a discovery can be measured by the degree of structure change it brings
to the intellectual space (Chen, 2012; Xu et al., 2022c). Profound scientific discoveries
usually arise from structural holes in the intellectual network, and such discoveries estab-
lish unexpected linkages between structures of knowledge (Chen et al., 2009). Based on
structural-entropy methods, Xu et al. (2022c) pointed out that detecting significant knowl-
edge-structure variations is useful for identifying the generation of breakthroughs. Funk
and Owen-Smith (2017) and Wu et al. (2019) also captured the degree of disruption to
the existing knowledge structure caused by a focal paper by examining the extent to which
future research deviates from its intellectual forebearers. As a result, they designed the dis-
ruption indicator. However, recently, improved metrics to measure disruption have been
developed to quantify and predict scientific breakthroughs (Lin et al., 2025; Wang et al.,
2023a; Wei et al., 2023). Lin et al. (2025) introduced a two-dimensional metric that inte-
grates the dimensions of disruption and scientific impact, considering both the breadth and
depth of the impact. The results showed that the CIB index achieved the highest AUC score
(0.79) for identifying scientific breakthroughs in the computer science field.

Another stream of research has focused on identifying breakthroughs based on the nov-
elty of the discovery. The underlying concept is that scientific breakthroughs often require
and are driven by novel approaches (Veugelers & Wang, 2019; Wang et al., 2017). From a
knowledge combination perspective (Schumpeter, 1939), novelty is derived from the com-
bination of existing bits of knowledge in an unusual or unprecedented way (Uzzi et al.,
2013; Wang et al., 2017). Previous studies have concluded that novelty is an essential prop-
erty of creative ideas (Lin et al., 2022; Ruan et al., 2023; Sheng et al., 2023; Uzzi et al.,
2013; Wang et al., 2017). Savov et al. (2020) also identified breakthroughs by concentrat-
ing on the novelty expressed in the paper. They devised an innovation score to identify
breakthroughs based on the assumption that the less similar the topic is to the past (the
more similar to future papers), the more innovative it is.
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Predicting scientific breakthroughs using machine learning methods

Machine learning methods that mine bibliometric information have become one of the
most powerful tools to predict scientific breakthroughs. Some studies have explored and
constructed citation-related features to predict scientific breakthroughs. For example,
Min et al. (2021a) developed metrics based on the citing citation network and employed
a logistic regression model to classify Nobel prize-winning papers and their counterexam-
ples. The study revealed disciplinary differences, with the optimal models achieving AUC
scores of 0.657 and 0.695 in the natural sciences and economics, respectively. Building on
their work, Yu et al. (2024) further proposed an optimization strategy from the perspective
of dynamic citation structures, capturing information from snapshots of 90 citation cas-
cade networks. The model enhanced the prediction accuracy, improving the AUC by 7%.
In addition to citation-related features, other bibliographic information has been adopted
such as paper-, journal-, and author-related features (Tahamtan et al., 2016) to predict
breakthroughs (Li et al., 2022, 2024; Wolcott et al., 2016). Wolcott et al. (2016) extracted
bibliographic information about the papers, journals, authors, and citations, and developed
a random forest predictive model to identify potential breakthroughs at earlier stages.

Other studies have focused on mining the in-depth content of articles using natural lan-
guage processing (NLP) (Savov et al., 2020; Wang et al., 2021). Savov et al. (2020) applied
the LDA model and support vector machine (SVM) to predict publication dates. They char-
acterized a paper’s innovation based on the degree to which the predicted date preceded or
lagged behind the actual publication date, thereby identifying potentially groundbreaking
research. Wang et al. (2021) proposed a breakthrough identification method that combined
self-evaluation and others’ evaluation of the significance of the work. They demonstrated
that breakthroughs are linked to positive words about the ideas in the abstracts or citing
sentences, such as “first,” “new,” and “novel.” Using the deep learning approach, they iden-
tified breakthrough research using judgement sentences with positive words. More recently,
Yu and Liang (2024) proposed a prediction framework based on graph signal processing,
which integrates multi-dimensional information, including textual content and citation
structures, achieving an AUC of approximately 80%.

Comparison with existing work

In summary, prior studies have predicted scientific breakthroughs from various perspec-
tives, mainly using bibliometric and machine learning methods. Although considerable
efforts have been dedicated to detecting such discoveries, several limitations remain. First,
regarding feature selection to predict scientific breakthroughs, previous studies have con-
centrated more on ex-post measures based on citation-related features. However, the fac-
tors associated with breakthroughs have not been fully investigated. To identify potential
factors associated with breakthroughs, we adopt the IPOO model comprising four key
dimensions: input, process, output, and outcome. Specifically, we incorporate new features
including combination recency, impact, novelty, and homogeneity of knowledge inputs in
a paper. We also incorporate important antecedents such as researchers’ knowledge base
and experience. Previous studies have identified these factors as influencing breakthrough
ideas. Ignoring such factors may limit the accuracy of scientific breakthrough predictions.
The second limitation is that machine learning algorithms are generally black-box mod-
els and lack adequate interpretability to elucidate how the prediction is made. Thus, previ-
ous interpretable machine learning models to predict breakthroughs are limited and have
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garnered little attention. This study addresses these research gaps and endeavors to inter-
pret the black-box nature of machine learning in predicting scientific breakthroughs using
the SHAP approach. Specifically, we analyze feature contributions to identify important
predictors. We also reveal previously uncovered relationships between the predictors and
scientific breakthroughs.

Another limitation is that using highly cited achievements to predict scientific break-
throughs may lead to a biased sample, making the model and results less reliable. Citations
are subject to bias, as they are influenced by many factors that are unrelated to the content
of the paper (Lyu et al., 2021b). For example, several scholars have identified the “Mat-
thew effect” or “Nobel prize effect” indicating that eminent scientists’ or laureates’ pub-
lications are usually given more credit (Dong et al., 2023; Frandsen & Nicolaisen, 2013;
Liao, 2021). Therefore, adopting a percentile approach that operationalizes breakthroughs
as highly cited papers is not appropriate, such as identifying the 0.1%, 1%, or 10% most
cited publications. Determining whether a work is a breakthrough requires the judgement
of peers (Min et al., 2021a; Schneider & Costas, 2017). Our study considers prize-win-
ning publications as the gold standard for breakthroughs. However, an expanded dataset of
Nobel prize-winning and Lasker prize-winning publications can serve as a supplement to
the data on scientific breakthroughs.

Data construction

Works that are recognized by the scientific community and authoritative organizations in
the form of a prize or honor can generally be considered scientific breakthroughs (Muga-
bushaka et al., 2020). In our study, prize-winning papers, including Nobel and Lasker
prize-winning papers, are regarded as ground-truth scientific breakthroughs. These prize-
winning papers have not only made original contributions to the stock of knowledge, which
is one of the foundations on which they are rewarded (Mugabushaka et al., 2020; Schneider
& Costas, 2017), but they have also had a profound impact on science and society.

The steps for data collection are as follows. We first collected Nobel prize-winning and
Lasker prize-winning papers. Specifically, Nobel prize-winning papers were drawn from
the dataset constructed by Li et al. (2019a), which includes 545 Nobel laureates with 874
prize-winning papers from 1900 to 2016 in the fields of physics, chemistry, and medicine.
Details of each prize-winning paper including the “Laureate name,” “Title,” and “Jour-
nal” are available at https://dataverse.harvard.edu/. The Lasker prize-winning papers were
crawled from the official website (see https://laskerfoundation.org/all-awards-winners/),
which lists selected publications for each Lasker winner from 1998 to 2022. A total of 107
Lasker winners with 661 prize-winning papers were obtained from the website. It should
be acknowledged that nineteen individuals have been awarded both the Nobel and Lasker
prizes, so their Nobel or Lasker prize-winning papers were merged in the collective body
of the author’s papers.!

In the second step, we linked the available Nobel and Lasker prize-winning papers to
the PubMed Knowledge Graph (PKG) dataset (Xu et al., 2020) to access the bibliographic

' The 19 winners are: David Baltimore, Thomas C. Siidhof, John Gurdon, Shinya Yamanaka, Ralph M.
Steinman, Elizabeth H. Blackburn, Carol W. Greider, Jack W. Szostak, James Rothman, Randy Schekman,
Mario Capecchi, Oliver Smithies, Robert Edwards, Aaron Ciechanover, Avram Hershko, Sydney Brenner,
Roderick MacKinnon, Lee Hartwell, Paul Nurse.
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information of each paper. For each paper, the unique PMID (a unique identifier for each
paper) was obtained by manually matching and checking with the PKG dataset accord-
ing to the title, publication year, journal, and author list. Our dataset included 952 award-
winning publications from 305 laureates with 855 unique breakthrough papers. Figure 1
presents the distribution of winning-prize papers annually from 1910 to 2019.

In the third stage, we systematically matched each breakthrough paper with a set of non-
breakthrough counterparts based on established practices in the science of science. Spe-
cifically, we adopted two well-established criteria from prior literature: (1) selecting non-
award-winning papers authored by the same researcher (Capponi et al., 2022); (2) pairing
breakthrough papers with non-breakthrough papers published in the same journal and year
(Min et al., 2021a; Wei et al., 2023). Based on these criteria, we constructed two datasets.
When determining the ratio of scientific breakthroughs to non-breakthroughs, we follow
previous empirical studies (Wang et al., 2023a; Wolcott et al., 2016) and set the ratio to
approximately 1:5, meaning that at least five non-breakthrough papers are matched to each
breakthrough paper.

Methodology

We begin by generating a set of features to predict scientific breakthroughs within the
IPOO framework: input-related, process-related, output-related, and outcome-related fea-
tures. We then introduce the data splitting, data pre-processing process and oversampling,
and the machine learning models used in our study. Finally, we describe SHapley Additive
exPlanations (SHAP) and provide explanations for the best identification model. The over-
all process of the machine-learning-based SHAP approach is shown in Fig. 2.

Feature selection framework

The Input-Process-Output-Outcome (IPOO) model has been adopted as a systematic theo-
retical framework for performance evaluation across various fields (Cammarano et al.,
2022; Choi & Choi, 2014; Ferreira et al., 2018; Hsu et al., 2020). It embodies a “systems
view” that conceptualizes performance indicators into four stages: input, process, output,
and outcome (Cammarano et al., 2022; Choi & Choi, 2014). Building on this conceptual
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foundation, we posit that scientific practice can also be considered a system (Winnink et al.,
2019). Therefore, we employ the IPOO model to uncover the predictive features associated
with scientific breakthroughs and then structure the resulting typology of features accord-
ing to these four dimensions.

Inputs are antecedent factors that are the “raw materials” or resources used in the
subsequent processes (de Carvalho et al., 2017). Knowledge resources are the key inputs
for future innovation (Cammarano et al., 2022; Chen et al., 2021). In scientific practice,
it is widely acknowledged that new ideas rarely come from nothing but, rather, scientists
recombine different streams of existing knowledge (Hur & Oh, 2021; Liang et al., 2020;
Mukherjee et al., 2017). The fundamental bits of knowledge constituting an innovative idea
(i.e., prior knowledge on which the new idea is built) are the “raw materials” or “ingredi-
ents” that innovators combine to form outputs (Petruzzelli et al., 2018). In other words,
prior knowledge is the key input that affects the generation of new ideas (Heeley & Jacob-
son, 2008). In particular, the characteristics of prior knowledge have been identified as cru-
cial determinants of innovation success (Heeley & Jacobson, 2008; Papazoglou & Nelles,
2023). Previous studies have confirmed that the amount (Schoenmakers & Duysters, 2010),
recency (Katila, 2002; Liang et al., 2020; Nerkar, 2003; Papazoglou & Nelles, 2023; Petru-
zzelli et al., 2018), impact (Kwon & Geum, 2020; Mukherjee et al., 2017), combination
novelty (Lin et al., 2022; Wang et al., 2017), and homogeneity (Hur & Oh, 2021) of prior
knowledge can lead to varying levels of innovation performance. Therefore, we consider
these five factors within this dimension.
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Processes refer to the transformation of these inputs into meaningful outputs (Marks
et al., 2001). In the context of scientific research, processes are related to the innovation
activities carried out or implemented to achieve the goals of new discoveries. Processes
are usually associated with creation, and innovators are seen as the heart of innovative pro-
cesses (Jones, 2009; Lee et al., 2015; Wagner et al., 2011). Integrating various knowledge
sources and developing logical linkages are usually accomplished by members of a team
(Dahlin et al., 2005; Porter & Rafols, 2009). Therefore, team members play a vital role
in driving innovative outputs, and their diverse characteristics contribute to different lev-
els of innovation performance (Ma et al., 2023). Previous studies have investigated factors
of knowledge-producing teams that are associated with innovative discoveries. These fac-
tors which include (1) team composition (e.g., gender, career age, and organizational back-
ground) (Ao et al., 2023; Li et al., 2019b; Yang et al., 2022); (2) team structure (Xu et al.,
2022a, 2022b); (3) team collaboration, including collaboration size, inter-institutional or
international collaboration, and collaboration freshness (Lyu et al., 2021a; Wu et al., 2019;
Zeng et al., 2021); (4) the strategies for selecting the topic (e.g., diversity, popularity and
novelty) (Chai & Menon, 2019; Ruan et al., 2023); (5) team members’ knowledge variety
and heterogeneity (Huo et al., 2019; Ma et al., 2023); (6) team members’ productivity and
citations (Wang et al., 2012, 2019a); (7) team members’ social ties (Wang et al., 2023b),
and (8) funding received (Lyu et al., 2021a). Given this evidence, we consider these factors
within the dimension, as they have been shown to be supportive conditions for innovative
outputs.

OQutputs are the final results produced by the system (MacCuspie et al., 2014). The
innovative outputs in the context of scientific research usually take the form of papers pub-
lished in journals. Within this dimension, we take into consideration detailed paper-related
and journal-related factors (Tahamtan et al., 2016; Wang et al., 2012).

Outcomes refer to the effects generated by these outputs. In the present study, outcome
indicators are related to innovation performance, which encompasses two dimensions: out-
put impact and disruption (Wei et al., 2023). Previous studies have demonstrated that inno-
vative outputs exhibit varying levels of performance, not only in terms of their impact (Min
et al., 2021a, 2021b; Schneider & Costas, 2017; Wang et al., 2012; Winnink & Tijssen,
2015; Winnink et al., 2019), but also in their potential to disrupt or reshape future trajec-
tories (Funk & Owen-Smith, 2017; Wu et al., 2019). Consequently, within this dimension,
we integrate these factors into our feature set. Table 1 provides an overview of the features
used in our study.

Data splitting

Sample selection. We excluded papers based on the following exclusion criteria to ensure
the computability of features: (1) published after 2016 to ensure that each paper has a
5-year citation time window since the PKG dataset only covers the complete citation infor-
mation up until 2019; (2) have fewer than two references since our combination novelty
and homogeneity measures {X4, X6} cannot be computed with fewer than two references;
or (3) have fewer than two citations in the first five years after publication since the cita-
tion network-related indicators {X52-X59} cannot be constructed. We finally obtained
756 breakthrough papers and 4219 non-breakthrough papers in Dataset 1, and 765 break-
through papers and 3791 non-breakthrough counterparts in Dataset 2.

Data splitting. In this phase, we performed a stratified split of the dataset into training-
validation data (90% of the total data) and test data (10% of the total data). The former was
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utilized for hyperparameter optimization, while the latter was used to evaluate the final
performance of the machine learning models. Specifically, within the training-validation
set, all parameter combinations were exhaustively explored using a tenfold cross-valida-
tion procedure. In each loop, one fold served as the validation set and the other folds were
employed as the training set. The optimal hyperparameter set was selected based on the
highest mean F1 score across validation folds.

Data pre-processing and data oversampling

The following strategies were executed:

Missing values imputation. We checked for samples containing missing values. We
deleted indicators with a substantial number of missing values, either in the positive class
or both classes. For continuous features, the remaining indicators were dealt with K-nearest
neighbor (KNN) imputation, which has been a widely used algorithm to handle missing
values (Jadhav et al., 2019). The core idea of this method is to impute values calculated
from the values of the k nearest neighbors. We set the default parameters using the Euclid-
ean distance function and k = 5 to select the nearest neighbors and calculated the average
for imputation. In addition, for categorical variables, we encoded the categorical data col-
umns into one-hot vectors.

Data normalization. Data normalization is an essential pre-processing step to improve
the data quality in machine learning studies (Singh & Singh, 2020). In this study, each
continuous feature was normalized using the max—min normalization method, which was
transformed into a value within the range of [0, 1].

Data oversampling. Our dataset presented an imbalanced classification problem in
that the positive class had a much smaller sample than the negative class. Balance can
be achieved by increasing the number of samples in the positive class (over-sampling)
(Elreedy & Atiya, 2019). We adopted the synthetic minority over-sampling technique for
nominal continuous features (SMOTE-NC) to balance the number of samples in each class
by generating synthetic data for the minority class (Chawla et al., 2002). This technique
was selected because it is an effective method that enhances performance on various imbal-
ance ratios of data (Doan et al., 2022), and it can handle both numerical and categorical
features well in our dataset.

Model selection and evaluation
Extreme gradient boosting - XGBoost

XGBoost is an optimized implementation of the ensemble method gradient boosting deci-
sion tree (GBDT), which was designed by Chen and Guestrin (2016). XGBoost is a sig-
nificant improvement as it uses the second-order Taylor expansion to approximate the loss
function, which makes the converge faster. Another improved feature is that it avoids the
over-fitting problem by incorporating a regularization term into the objective function. The
core of the algorithm is to achieve a prime solution of the objective function, which is
expressed in Eq. 1.

Objective = ZL(y,-, %) + Z Q(f) (D
i k
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The first term is the loss function that denotes the difference between the predicted
and actual values, while the second term serves as the regularization term that represents
the complexity of the model. XGBoost has been utilized extensively in various fields to
address challenging tasks due to its high accuracy and fast processing time (Ekanayake
et al., 2022; Wang et al., 2022). Consequently, we employed the XGBoost model in this
study to develop a prediction model for scientific breakthroughs by leveraging its high pre-
dictive performance in classification tasks (Joung & Kim., 2023; Ma et al., 2022; Parsa
et al., 2020).

Baseline models

To demonstrate the superiority of the XGBoost model (XGB), we compared it with other
typical machine learning models, including logistic regression (LR), random forest (RF),
support vector machine (SVM), multilayer perceptron (MLP), decision tree (DT), and Ada-
Boost (ADB). The first four algorithms have been employed in previous studies to identify
scientific breakthroughs (Li et al., 2022; Min et al., 2021a; Wolcott et al., 2016), and the
last two tree-based models have been commonly used to build classification models (Ma
et al., 2022).

We further compared the results with Min et al.’s (2021a) study that used a machine
learning model to predict Nobel prize-winning papers. In their study, 116 Nobel prize-
winning papers and their counterpart papers were used in the logistic model. The model
included nine features that quantify the structure of citation networks: X52-X59.

Large language models (LLMs)

We also conducted additional experiments using large language models (LLMs). We
employed frozen local LLMs, including Llama-3.2-1B/3B and Qwen3-1.7B/4B, and
trained them with a lightweight fusion head for the downstream prediction task. Regard-
ing the data preprocessing, we took the same setting as previous machine learning models.
Then, all features were projected through a multilayer perceptron to align with the hidden
dimensionality of the LLM. The projected representation was then fused with the LLM’s
final-layer output via cross-attention, and the fused embedding was fed into a lightweight
MLP classifier. During training, we optimized only the projection, fusion, and classifier
parameters using AdamW, while keeping the LLM backbone frozen. This design aimed
to leverage the semantic richness of the LLM embeddings without incurring the cost chal-
lenges of fine-tuning the entire model.

Model evaluation

Predicting scientific breakthroughs is a binary classification task. We adopted the F1 score
and the area under the receiver operating characteristic (ROC) as the main metrics to eval-
uate the performance of a classification task (Ma et al., 2022; Ragini et al., 2018).

The F1 score is the harmonic average of precision and recall using the following
formula:

Precision - Recall

Fl=p. Jrecision Recdll
Precision + Recall

2
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where precision represents the ratio of the number of samples in the positive class to the
number of samples that are predicted as the positive class. Recall denotes the ratio of the
number of samples that are correctly predicted as the positive class to the total number of
samples in that category, calculated as:

.. TP
Precision = ——— 3)
TP + FP
TP
Recall = ————
A= TP Y EN @

where TP indicates the number of samples with the correct classification to the positive
class. FP denotes the incorrect classification to the positive class, and FN represents the
incorrect classification to the negative class.

The ROC was created on a space where the false positive rate (FPR) is on the X coor-
dinate, and the true positive rate (TPR) is on the Y coordinate at various threshold settings.
The area under the ROC curve (AUC) was used to evaluate the performance of the model,
ranging from [0, 1]. The closer the value is to 1, the better the prediction of the model.
AUC=0.5 represents the result of random guessing.

Model interpretation: SHapley Additive exPlanations (SHAP)

SHAP is an effective way to explain the output of machine learning models based on the
game theoretic approach proposed by Shapley and Shubik (1954). It was first proposed by
Lundberg and Lee (2017). For each sample, it assigns a SHAP value to each input vari-
able (feature) to represent its contribution to model prediction. For an input dataset of size
N X M (N denotes the number of samples, and M represents the number of features), the
weighted sum of the marginal contribution is calculated when the feature is added, produc-
ing an N X M matrix with the SHAP values. It is expressed as:

ISI'AM] — IS[ = D!

b= IM]|!

SCF\X,

(F(SUX;) —£©S) (5)

where F is the set of all features { X, X,, ...X,,}. F\{X} represents the set of features of F
without the feature {X;}. S are all feature subsets of F\ {X;}. |M] is the total number of fea-
tures in M while | S| is the total number of features in S. The model f (S U {Xi}) is trained
with the set of features S and {X;}, and the model f(S) is trained with the feature set S. We
explore the possible relationship between the feature value and the impact on the model
prediction with SHAP.

Results

Prediction results

In this section, the performance of seven machine learning models is evaluated on the
test set to investigate whether XGB outperforms other widely used models. The results in

Table 2 show the performance measures: F1 score, precision, and recall for all models. The
recall scores of XGB are 0.636 and 0.623 for Dataset 1 and Dataset 2, respectively, ranking
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Table 2 The performance of machine learning models

Dataset 1 Dataset 2

Models F1 score Precision Recall AUC F1 score Precision Recall AUC

LR 0.584 0.667 0.519 0.874 0.497 0.433 0.584 0.811
DT 0.531 0.576 0.494 0.852 0.467 0.383 0.597 0.777
RF 0.559 0.606 0.519 0.900 0.531 0.470 0.610 0.843
ADB 0.591 0.709 0.506 0.897 0.511 0.455 0.584 0.841
MLP 0.472 0.630 0.377 0.808 0.452 0.385 0.545 0.768
SVM 0.577 0.597 0.558 0.874 0.520 0.460 0.597 0.814
XGB 0.613 0.590 0.636 0.898 0.611 0.600 0.623 0.880

Ist. In terms of F1 scores, XGB achieves the best performance with scores of 0.613 and
0.611, respectively. Since the DT is a weak learner, it yields relatively weaker predictions
than the tree-based algorithms, namely RF, ADB, and XGB. The ensemble learning meth-
ods, including boosting (ADB, XGB) and bagging (RF) algorithms, provide an improved
version of the classic DT and are more accurate and robust than individual learning meth-
ods. In addition, as displayed in Fig. 3, XGB performs quite well in terms of the AUC
score, ranking 2nd in Dataset 1 and 1st in Dataset 2 (0.898 and 0.880, respectively).
Overall, based on the evaluation scores, our results imply the potential of XGB in the
breakthrough identification task across both datasets. Additionally, we found differences in
the evaluation scores between the two datasets, which suggests that the construction of the
non-breakthrough class affects prediction accuracy, with Dataset 1 demonstrating superior
performance. Our study indicates that the model’s performance depends not only on the
selection of algorithm but also on the construction method of negative samples. Compared
with Dataset 1, Dataset 2 was designed to include non-breakthrough papers that are more
comparable to breakthroughs in terms of journal-related features (e.g., journal impact),

LR (AUC = 0.811)
DT (AUC = 0.777)

RF (AUC = 0.843)

ADB (AUC = 0.841)
MLP (AUC = 0.768)
SVM (AUC = 0.814)
XGB (AUC = 0.880)

LR (AUC = 0.874)
DT (AUC = 0.852)

—— RF (AUC = 0.900)

0.2 4 ~— ADB (AUC = 0.897)
= MLP (AUC = 0.808)
— SVM (AUC = 0.874)
- XGB (AUC = 0.898)
6

0.0 0.2 0.4 0. 0.8 1.0 0.8 10

Fig. 3 ROC curves of the seven algorithms (Dataset 1 and Dataset 2)
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which may reduce the distinctions between the breakthrough and non-breakthrough groups.
The relatively smaller differences between the two classes in these features may have led
to relatively lower predictive accuracy for models based on Dataset 2. Future studies could
further examine the robustness of our findings under different sampling strategy.

Comparison with related work

The results are compared with the baseline model (with nine features) constructed by Min
et al. (2021a). Figure 4 presents the changes in performance measures of our model relative
to the baseline model in the two datasets. In Dataset 1 (orange bars), while MLP yields a
lower F1 score compared to the baseline, all other algorithms demonstrate superior per-
formance. Notably, XGB achieves remarkable improvements with F1 score increases of
12.5%, and recall score increases of 13%. In Dataset 2 (green bars), the F1 and AUC scores
of all models demonstrate significant improvement over the baseline, with the exception
of MLP. Notably, XGB achieves the greatest enhancement with an F1 score increase of
14.8% and an AUC score increase of 9.6%. In summary, our study achieves predictions

datasetl mmm dataset2 datasetl mm  dataset2
0.2 0.2
0.1 0.1
an Blo N~ o ~ 0 c n © m n o
B o co BE SE = & B 2@ 8 EH EE E
S o = © =1 =] - ‘B S = ° =] =] o =l
= 00 — 2 00
[ ~. o =
83 g S
Lkl Q <
-0.1 -0.1
-0.2 -0.2
IR SM DI RF ADB XGB MLP IR SM Df RF ADB XGB MLP
Models Models
datasetl B dataset2 datasetl m dataset2
0.2 0.2
0.1 0.1
gs B s 8 82 22 22 28 28 58 =
B iR & § g o | Ga Gft G CH SN SN 3
S oo — 2 0.0
m m oo o o wv
g g3 l g @ g B !
R e g s &
-0.1 -0.1
-0.2 -0.2
IR svM DT RF  ADB  XGB  MLP IR SsvM DT RF  ADB  XGB  MLP
Models Models

Fig.4 Comparison of F1, precision, recall, and AUC of predictions with related work (Dataset 1 and Data-
set 2)
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with acceptable accuracy compared to Min et al. (2021a), with XGB achieving superior
improvements across evaluation metrics in both datasets.

It should be noted that when using the same baseline model, our results are higher than
those of Min et al. (2021a) with an AUC of 0.619. The differences are likely attributed to
the following reason. The dataset of non-breakthroughs in Min et al.’s (2021a) study was
constructed from papers that received approximately equivalent citation counts as break-
throughs, which means that one of the features, citation counts, showed limited predictive
power in their model.

Comparison with LLMs

Table 3 reports the results of four LLMs, including Llama-1B/3B and Qwen3-1.7B/4B. As
shown in Table 3, QWen3-1.7B achieves the best recall and F1 values in Dataset 1, with a
recall score of 0.61 and an F1 score of 0.584, respectively. The AUC results further con-
firm that QWen3-1.7B performs well, ranking first among all models. In Dataset 2, Llama-
3B demonstrates the best performance in terms of F1 and AUC values, while Llama-1B
achieves the highest recall (0.805). Comparing the classification results in Tables 2 and 3,
we find that in Dataset 1, the LLMs generally achieve lower evaluation scores than tradi-
tional machine learning models in terms of F1 and AUC scores, except for DT and MLP.
Notably, the best-performing XGB surpasses QWen3-1.7B. However, both Llama-3B and
QWen3-1.7B achieve higher recall scores than all other traditional machine learning mod-
els, except XGB. In Dataset 2, we find that SVM, RF, ADB and XGB perform better than
LLMs in terms of F1 and AUC scores. Both Llama-1B/3B achieve higher recall scores
than all seven traditional machine learning models.

In summary, there are several main findings: (1) In both datasets, XGB performs best
among traditional machine learning models, and also surpasses LLMs; (2) LLMs (Qwen3-
1.7B in Dataset 1 and Llama-1B in Dataset 2) have higher recall scores than the majority of
traditional machine learning methods; and (3) Similar to the results of traditional machine
learning models, LLMs demonstrate superior performance in Dataset 1 compared to Data-
set 2, depending on the construction of the non-breakthrough class.

Model interpretability

For a global explanation, we employed the XGBoost model’s built-in feature importance
analysis to obtain the feature importance ranking. The results revealed the extent to which
each feature impacts the model prediction. Table 4 lists the top ten features, with Ni identi-
fied as the most important feature. These top features fall into four categories: paper impact

Table 3 The performance of LLMs

Dataset 1 Dataset 2
Models F1 score Precision Recall AUC F1 score Precision Recall AUC
Llama-1B 0.544 0.571 0.520 0.865 0.5 0.363 0.805 0.820
Llama-3B 0.548 0.506 0.597 0.867  0.505 0.413 0.649 0.821
QWen3-1.7B 0.584 0.560 0.610 0.879 0455 0.404 0.520 0.810
QWen3-4B 0.557 0.619 0.507 0.869  0.503 0.457 0.558 0.817
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Table 4 The top ten important

features Rank Feature Importance
1 Ni 0.159
2 MA_H 0.039
3 CNedge 0.036
4 MA_citation 0.036
5 MA_num 0.031
6 1_total 0.031
7 JIF 0.021
8 CNdegree 0.020
9 1_self 0.019
10 FA_H 0.018

(CNedge, I_total, CNdegree, and I_self), paper disruption (Ni), team experience (MA_H,
MA_citation, MA_num and FA_H), and journal impact (JIF). However, XGBoost mod-
el’s built-in feature importance analysis cannot interpret the relationship between the fea-
tures and model prediction. Therefore, we further used the SHAP approach to interpret the
model. We conducted both SHAP importance analysis and SHAP dependency analysis to
explore the possible relationship between the feature value and the impact on the model
prediction. The corresponding results are provided in Online Appendix B, which supple-
ments the XGBoost built-in feature importance analysis.

In addition to the global explanations mentioned above, we adopted SHAP methods to
provide local explanations for each individual sample. Figure 5 illustrates the explanations
for the instance obtained from the SHAP waterfall plot. SHAP values decompose the pre-
diction of the model into the sum of the contributions of each input variable. All vari-
ables (features) collectively contribute to the deviation of prediction from the base value,
ultimately determining whether the output is breakthrough or non-breakthrough. Red ones
denote variables that push the prediction toward breakthrough, while blue ones represent

CNdegree
Ni +1.6
I_self
CNedge

I_total +0.6

MA_citation ~ —0.57 .
504 = JIF D)
R_impact —-0.47 .

Co_avgdegree . +0.41
12 = R_cov -0.38 .
87 other features

1 2 3 4 5 6 7 8

0
E[fiX)]

Fig.5 The most important SHAP local explanation
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variables that influence the prediction toward non-breakthrough. The length of the bar
reflects the magnitude of the contribution to the prediction.

Following Saarela and Kaerkkaeinen (2020), we show the most important local expla-
nation for the sample. This explanation has the highest predicted probability to be a break-
through and was actually a breakthrough (true positive). The sample is from Okita et al.
(2007), in which Shinya Yamanaka was honored with the 2009 Lasker Basic Medical
Research Award for nuclear reprogramming discoveries. First, our analysis shows that the
relatively high CNdegree plays the most significant predictive role in this case, exhibiting
positive effects on the prediction of a breakthrough (SHAP=1.85). In addition, the rela-
tively high values of Ni (171), I_self (44), CNedge (9,887), and I_total (1,166) collectively
lead to further divergence from the base value, as these factors exhibit positive impacts on
the model. These top-ranked features indicate that outcome-related features dominate the
prediction in this individual case. In addition, a publication in Nature emerged as another
significant feature with a SHAP value of 0.50. For other features, MA_citation, R_impact
and R_cov have opposite effects (SHAP=-0.57, —0.47 and —0.38, respectively), which
pushes the model away from the positive class. In summary, when taking all feature contri-
butions into consideration during the prediction process, the model accurately predicts the
breakthrough classification.

Discussion and conclusion

Identifying breakthrough research is a significant and challenging issue not only for scien-
tists in the scientific community, but also for R&D management and policymakers. This
paper presents an interpretable machine learning model to predict scientific breakthroughs
utilizing a new dataset of Nobel and Lasker prize-winning publications. Specifically, we
designed an upgraded framework that integrates possible factors that are associated with
breakthroughs with the IPOO perspective. Traditional machine learning models and large
language models are adopted to evaluate prediction performance. We also applied the
XGBoost model’s built-in importance method and SHAP to identify critical factors and
quantify their influence on the model. This approach improves the transparency and inter-
pretability of the prediction and provides new insights.

Main conclusion

Research has begun to highlight the importance of identifying scientific breakthroughs,
regarded as major innovations in the advancement of science. The key findings of this
study are as follows:

(1) XGBoost exhibits the best predictive performance among traditional machine learn-
ing methods in two datasets.

(2) Compared with the results of the baseline model constructed by Min et al. (2021a),
our study achieved better accuracy in identifying scientific breakthroughs. We found
that XGBoost demonstrates remarkable improvements of 12.5% and 14.8% in the F1
score in the two datasets, respectively.

(3) Qwen3-1.7B and Llama-3B are the best models among the LLMs in Dataset 1 and
Dataset 2, respectively. In terms of overall performance measured by the F1 score, tra-
ditional machine learning models perform better than LLMs, except for DT and MLP.

@ Springer



Scientometrics

LLMs (Qwen3-1.7B in Dataset]l and Llama-1B in Dataset 2) have higher recall scores
than most traditional machine learning methods.

(4) The XGBoost model’s built-in feature importance analysis suggests that Ni, MA_H,
CNedge, MA_citation, MA_num, I_total, JIF, CNdegree, I _self and FA_H are the most
influential features.

(5) We compared the consistency of the top contributing features using SHAP analysis,
logistic regression analysis, and the model’s built-in feature importance analysis. First,
the results show that Ni plays the most important role and exhibits a positive correlation
with the prediction of breakthroughs. This finding serves as the foundation for exploring
the capabilities of the Ni indicator in subsequent studies. Second, Ni, I_self, CNedge,
MA_H, and [_total consistently appear and are ranked among the top features across
the three methods. In addition, the logistic regression analysis shows that approximately
85% of the features that are statistically significant exhibit directional consistency with
SHAP values (for details, please refer to Online Appendix B-D).

Our study built upon the work of Min et al. (2021a) by extending the set of observ-
able features and offering a more in-depth interpretation of their interrelationships with
scientific breakthroughs. The findings demonstrate that XGBoost achieved the best per-
formance, with F1 scores of 0.613 and 0.611 for Dataset 1 and Dataset 2, respectively.
Although the prediction results are better than random guessing and that of Min et al.
(2021a), there is still room for improvement in the prediction of scientific breakthroughs.
Although opportunities remain for further improvement, our results demonstrate that the
features we constructed are capable of capturing important aspects of the underlying pat-
terns associated with scientific breakthroughs. Importantly, the features we employed align
with those that have been widely adopted in citation prediction studies, including predict-
ing citation counts (Bai et al., 2019; Ruan et al., 2020; Zhang et al., 2021), technologi-
cal impact (Gao et al., 2024), clinical citations (Liu et al., 2024), and the identification of
highly cited papers (Hu et al., 2023; Wang et al., 2019a, 2019b). While citation predic-
tion tasks often achieve AUC scores exceeding 0.86 or F1 scores above 0.69 (Akella et al.,
2021; Fu & Aliferis, 2010; Hu et al., 2023), breakthrough prediction presents a fundamen-
tally different and more challenging problem. Citation outcomes are heavily influenced by
extrinsic factors, such as author reputation, journal prestige, or network visibility (Fu &
Aliferis, 2010), which are relatively easier to quantify. In contrast, breakthroughs are likely
driven more by intrinsic characteristics, including the originality, quality, and transforma-
tive potential of the research itself, which are more difficult to observe and operational-
ize. Accordingly, although our study focuses on observable, bibliometric-based features,
we recognize that enhancing the prediction of breakthroughs may require incorporating
richer representations of research content. Future work could integrate semantically inter-
pretable patterns derived from the full texts of articles, going beyond traditional metadata
approaches (Beranova et al., 2022), thereby further advancing predictive performance.

Theoretical implications

This study provides a novel lens for predicting scientific innovation grounded in the the-
oretical foundations of the IPOO model. While previous studies have demonstrated the
effectiveness of the IPOO model in developing performance evaluation frameworks, its
potential for scientific breakthrough prediction remains underexplored. Our study makes
a primary theoretical contribution by establishing a pathway that demonstrates how the
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IPOO model can be operationalized for breakthrough prediction. Through this lens, we
decompose the relevant factors into knowledge input, team process, innovative output, and
innovative outcome dimensions, and further identify potential factors within each dimen-
sion. By empirically validating our framework on two datasets, we advance our under-
standing of the mechanisms underlying scientific breakthroughs and reveal the most sig-
nificant predictors influencing breakthroughs.

Another implication is that, unlike existing studies, we employ the XGBoost-SHAP
machine learning approach to identify scientific breakthroughs. First, the findings demon-
strate the effectiveness of the XGBoost model and show that it is capable of higher pre-
dictive accuracy. In addition, the findings related to feature contributions indicate that
outcome-related factors (Ni, CNedge, I_total, CNdegree, and I_self), team experience
(MA_H, MA_citation, MA_num and FA_H), and journal impact (JIF) play crucial roles
in identifying breakthroughs. In addition, the findings reveal several new relationships. For
example, Ni is positively correlated with the prediction of breakthroughs.

Practical implications

This study provides several practical implications for science policymakers and academic
evaluators. First, our results show that machine learning methods are more effective in
detecting scientific breakthroughs. Given the exponential growth of scholarly publications
each year, an automated identification method may be a preferable way for databases to
identify potential excellent papers. For example, the “Clarivate Citation Laureates” are
selected based on the paper and citations in the Web of Science platform. They could be
considered candidates to win a Nobel prize. Similarly, researchers can leverage well-estab-
lished research infrastructures with open datasets containing available bibliographic data of
publications, such as the PKG dataset (Xu et al., 2020) and the SciSciNet (Lin et al., 2023),
which initially offers commonly used metrics. The method proposed in our study may help
researchers identify potential outstanding papers in the database and effectively assist in
the evaluation of research papers.

Our findings also provide potential quantitative guidance for identifying ground-break-
ing discoveries using an alternative perspective. A wealth of research has been dedicated
to measuring significant innovations in science using ex-post measures, including cita-
tion count-based and citation network-based approaches. Our study suggests that Ni is the
strongest predictor in ex-post measures. This finding suggests the potential utility of the
measurs in future applications. However, future work should verify our results.

Limitations and future directions

This study is not without limitations. First, the calculation of features is dependent on the
bibliographic information in the PKG database. Consequently, the results are influenced
by the quality of the database. For example, citation-based indicators are intricately related
to the coverage and accuracy of the citation data in the database. Second, we acknowledge
that many unobservable factors, such as the quality or originality of the discovery, influ-
ence the prediction of breakthroughs. However, they were not incorporated into our study.
Examining these factors is challenging, as it requires an in-depth analysis of the content
of articles. Consequently, our study is limited to observable factors that have been quanti-
fied and examined in previous studies. Therefore, the scope of predictive features consid-
ered in our model is constrained. Future endeavors should combine both literature-related
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features and content-related features to enhance the detection of breakthrough discoveries.
In addition, for feasibility, we adopted a 1:5 ratio of scientific breakthroughs to non-break-
throughs, which is far less imbalanced than the real-world distribution. This difference
may affect the generalizability of the results under more realistic distributions. Future work
could evaluate the method under more realistic ratios on larger datasets.

Supplementary Information The online version contains supplementary material available at https://doi.
0rg/10.1007/s11192-025-05497-7.
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