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Abstract
Identifying scientific breakthroughs is of great significance for research evaluation and 
policy-making. Thus, it has been the central focus in the realm of science. This study lev-
erages a new dataset of Nobel and Lasker prize-winning publications and employs the 
eXtreme Gradient Boosting (XGBoost) algorithm to establish a predictive model for scien-
tific breakthroughs. The Input-Process-Output-Outcome (IPOO) framework serves as the 
fundamental perspective to deconstruct the potential factors associated with breakthroughs 
into four dimensions: input, process, output, and outcome. We demonstrate that XGBoost 
achieves the best predictive accuracy among traditional machine learning models, with F1 
scores of 0.613 and 0.611 in Dataset 1 and Dataset 2, and AUC values of 0.898 and 0.880, 
respectively. Large language models (LLMs), used as additional baselines, exhibit higher 
recall scores on both datasets. In addition, we utilize the SHapley Additive exPlanations 
(SHAP) approach to enhance the interpretability of our model, enabling a deeper under-
standing of how features influence the prediction of scientific breakthroughs, which has 
been overlooked in previous research. This study introduces an explainable machine learn-
ing approach for tracing breakthrough research in science with bibliographic information, 
yielding valuable insights into future research.
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Introduction

It is generally acknowledged that breakthroughs at the cutting edge of science are linked 
to exceptional innovation (Häyrynen, 2007). Although such discoveries may be few in 
number, they have the potential to challenge the established paradigm and cause radical 
changes in our perception of the world. These discoveries are also recognized as crucial 
for further scientific progress and may pave the way for technological applications (Kuhn, 
1970; Winnink et al., 2019). Thus, facilitating and fostering scientific breakthroughs has 
attracted increased attention in various countries (Häyrynen, 2007; Wang et al., 2021).

The identification of scientific breakthroughs is of great interest to a wide range of 
scholars in the realm of science. The availability of harvest databases with bibliographic 
data from publications makes it possible to use bibliographic information to quantitively 
detect such discoveries (Min et al., 2021a; Winnink & Tijssen, 2015; Winnink et al., 2019). 
Specifically, existing literature has used citation count-based models (Ponomarev et  al., 
2014a, 2014b; Schneider & Costas, 2017; Winnink et  al., 2019), citation network-based 
models (Funk & Owen-Smith, 2017; Min et  al., 2021a, 2021b; Wang et al., 2023a; Wei 
et al., 2023; Wu et al., 2019), and novelty indicators (Savov et al., 2020; Wang et al., 2017) 
to identify scientific breakthroughs. However, these methods mainly rely on the ex-post 
measure of impact and are controversial due to a concentration on a specific property of 
breakthroughs. For example, citation-based analysis is biased as it fails to comprehensively 
assess the innovativeness of scholarly publications (Xu et  al., 2022c). In addition, prior 
studies have shown considerable inconsistency in the criteria for defining scientific break-
throughs. Some scholars have used the quantitative approach to define breakthroughs, such 
as operationalizing breakthroughs as the top 0.1%, 1%, or 10% of highly cited publications. 
Others have used peer review results to determine breakthroughs, as noted by Schneider 
and Costas (2017). They contended that “What eventually is considered breakthrough 
research is a matter to be decided by peers” (p. 711). However, previous studies mainly 
relied on a limited dataset consisting solely of Nobel prize-winning publications. Unlike 
previous research, we consider discoveries that have won significant prizes as scientific 
breakthroughs, including the Nobel Prize and the Lasker Prize. It could complement the 
larger sample of scientific breakthroughs compared to using only examining Nobel prize-
winning papers.

This paper aims to predict major discoveries based on peer review using machine learn-
ing methods. This approach enhances prior research in two unique ways. First, this study 
represents the first attempt to adopt the Input-Process-Output-Outcome (IPOO) framework 
as a fundamental lens for predicting scientific breakthroughs. This framework systemati-
cally deconstructs potential factors into input, process, output, and outcome dimensions. 
It also enables a more structured and interpretable foundation for breakthrough forecast-
ing. Second, while machine learning methods have advanced researchers’ capability to pre-
dict innovativeness, it introduces limitations from the inherently “black box” nature of the 
prediction process, which hinders interpretability. Therefore, the machine-learning-based 
SHapley Additive exPlanations (SHAP) approach is used in our study to decode and eluci-
date the influence of features related to scientific breakthroughs.



Scientometrics	

Review

Definitions and characteristics of breakthroughs

Kuhn (1970) theorized that scientific progress does not follow a cumulative unified path, 
but follows nonlinear laws. Specifically, two states of “normal” science and “revolution-
ary” science appear alternatively. Scientific advancements are not solely dependent on 
numerous small, incremental advances that are carried out within existing and accepted 
pathways. They are also driven by occasional major discoveries that alter the existing 
paradigm, leading to dramatic changes in science. Breakthroughs are usually aligned with 
these latter discoveries, with scientists using synonyms such as “revolutionary discoveries” 
(Kuhn, 1970), “transformative research” (Chen et al., 2009) or “disruptive research” (Wu 
et al., 2019). The lack of a generally accepted definition for breakthroughs is illustrated by 
these varied synonyms. To date, no consensus has been reached on what constitutes such 
research, and the definition throughout the scientific community is not specific.

The concept of scientific breakthroughs has been interpreted in various ways. For exam-
ple, Winnink (2017) stated that breakthroughs are discoveries that have a major impact on 
science. Breakthroughs refer to advancements that are highly useful to numerous scientists 
in addressing scientific problems (Hollingsworth, 2008). Based on this view, an essential 
feature of scientific breakthroughs is a study’s “major impact,” which has the potential to 
influence subsequent studies (Wang et al., 2023a) and contribute to further progress in sci-
ence. However, remarkably, breakthroughs also have an impact that goes beyond its own 
domain to impact other fields of science. Schneider and Costas (2017, p. 711) indicated 
that breakthroughs lead to “important citation spread over its own field and also other 
fields of science.”

Existing research has also indicated that breakthroughs do not follow existing findings 
and must “have a genuine relevance on its own” (Schneider & Costas, 2017, p. 711). This 
relevance usually requires novel approaches (Uzzi et  al., 2013; Wang et  al., 2017), or a 
new way of thinking about a problem (Hollingsworth, 2008). The distinctive nature may 
consequently lead to “reorientations of established research streams onto new frontiers” 
(Wang et al., 2023a, p. 3), or “dramatically change the direction of future research” (Wei 
et al., 2023, p. 1). These views emphasize “originality” as the key characteristic that distin-
guishes breakthroughs from non-breakthroughs. Wang et al., (2023a, p. 3) also mentioned 
that breakthroughs are innovative discoveries that “make an original contribution to the 
knowledge system of science.” This new knowledge plays a key role in paving the way for 
a new avenue of exploration.

Prediction of scientific breakthroughs

In bibliometrics and scientometrics, much attention has been paid to predicting scien-
tific success such as predicting the impact of a paper (Hu et al., 2023; Wang et al., 2019a, 
2019b), the success of a scientist (Daud et al., 2015; Kumar et al., 2023), the success of 
research collaborations (Hückstädt, 2023), and research grants (Tohalino & Amancio, 
2022). In this study, we focus on scientific breakthroughs and review related literature 
using bibliometrics and machine learning methods.
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Predicting scientific breakthroughs using bibliometric methods

Scientific breakthroughs are usually studied quantitatively. Using bibliometric information 
to identify breakthroughs has been an aim for decades. The three mainstream approaches 
are citation count-based, citation network-based, and novelty-based methods. One way to 
understand breakthrough research is to characterize it as a highly cited discovery (Mukher-
jee et al., 2017; Schilling & Green, 2011; Uzzi et al., 2013). It is based on the assumption 
that followers who are inspired by or build on previous work acknowledge its value by 
citing it, and the number of citations implies its impact on the scientific community (Lee 
et al., 2015; Mugabushaka et al., 2020). Previous research has modeled predictive citation 
count-based approaches to detect breakthroughs (Ponomarev et al., 2014a, 2014b; Schnei-
der & Costas, 2017; Winnink et al., 2019). For example, Ponomarev et al. (2014b) fit linear 
and nonlinear models to citation data based on early citation counts (at the 6th, 12th, and 
24th months) to predict later citation counts in the fifth year. The predicted values were 
compared with quantile thresholds to determine whether a paper could be classified as a 
breakthrough.

Detecting scientific breakthroughs from a knowledge structure perspective has been of 
interest to scholars. The hypothesis is based on the fact that breakthrough discoveries are 
linked to dramatic, structural changes in the existing body of knowledge in science. The 
potential value of a discovery can be measured by the degree of structure change it brings 
to the intellectual space (Chen, 2012; Xu et  al., 2022c). Profound scientific discoveries 
usually arise from structural holes in the intellectual network, and such discoveries estab-
lish unexpected linkages between structures of knowledge (Chen et  al., 2009). Based on 
structural-entropy methods, Xu et al. (2022c) pointed out that detecting significant knowl-
edge-structure variations is useful for identifying the generation of breakthroughs. Funk 
and Owen-Smith (2017) and Wu et  al. (2019) also captured the degree of disruption to 
the existing knowledge structure caused by a focal paper by examining the extent to which 
future research deviates from its intellectual forebearers. As a result, they designed the dis-
ruption indicator. However, recently, improved metrics to measure disruption have been 
developed to quantify and predict scientific breakthroughs (Lin et al., 2025; Wang et al., 
2023a; Wei et al., 2023). Lin et al. (2025) introduced a two-dimensional metric that inte-
grates the dimensions of disruption and scientific impact, considering both the breadth and 
depth of the impact. The results showed that the CIB index achieved the highest AUC score 
(0.79) for identifying scientific breakthroughs in the computer science field.

Another stream of research has focused on identifying breakthroughs based on the nov-
elty of the discovery. The underlying concept is that scientific breakthroughs often require 
and are driven by novel approaches (Veugelers & Wang, 2019; Wang et al., 2017). From a 
knowledge combination perspective (Schumpeter, 1939), novelty is derived from the com-
bination of existing bits of knowledge in an unusual or unprecedented way (Uzzi et  al., 
2013; Wang et al., 2017). Previous studies have concluded that novelty is an essential prop-
erty of creative ideas (Lin et al., 2022; Ruan et al., 2023; Sheng et al., 2023; Uzzi et al., 
2013; Wang et al., 2017). Savov et al. (2020) also identified breakthroughs by concentrat-
ing on the novelty expressed in the paper. They devised an innovation score to identify 
breakthroughs based on the assumption that the less similar the topic is to the past (the 
more similar to future papers), the more innovative it is.
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Predicting scientific breakthroughs using machine learning methods

Machine learning methods that mine bibliometric information have become one of the 
most powerful tools to predict scientific breakthroughs. Some studies have explored and 
constructed citation-related features to predict scientific breakthroughs. For example, 
Min et al. (2021a) developed metrics based on the citing citation network and employed 
a logistic regression model to classify Nobel prize-winning papers and their counterexam-
ples. The study revealed disciplinary differences, with the optimal models achieving AUC 
scores of 0.657 and 0.695 in the natural sciences and economics, respectively. Building on 
their work, Yu et al. (2024) further proposed an optimization strategy from the perspective 
of dynamic citation structures, capturing information from snapshots of 90 citation cas-
cade networks. The model enhanced the prediction accuracy, improving the AUC by 7%. 
In addition to citation-related features, other bibliographic information has been adopted 
such as paper-, journal-, and author-related features (Tahamtan et  al., 2016) to predict 
breakthroughs (Li et al., 2022, 2024; Wolcott et al., 2016). Wolcott et al. (2016) extracted 
bibliographic information about the papers, journals, authors, and citations, and developed 
a random forest predictive model to identify potential breakthroughs at earlier stages.

Other studies have focused on mining the in-depth content of articles using natural lan-
guage processing (NLP) (Savov et al., 2020; Wang et al., 2021). Savov et al. (2020) applied 
the LDA model and support vector machine (SVM) to predict publication dates. They char-
acterized a paper’s innovation based on the degree to which the predicted date preceded or 
lagged behind the actual publication date, thereby identifying potentially groundbreaking 
research. Wang et al. (2021) proposed a breakthrough identification method that combined 
self-evaluation and others’ evaluation of the significance of the work. They demonstrated 
that breakthroughs are linked to positive words about the ideas in the abstracts or citing 
sentences, such as “first,” “new,” and “novel.” Using the deep learning approach, they iden-
tified breakthrough research using judgement sentences with positive words. More recently, 
Yu and Liang (2024) proposed a prediction framework based on graph signal processing, 
which integrates multi-dimensional information, including textual content and citation 
structures, achieving an AUC of approximately 80%.

Comparison with existing work

In summary, prior studies have predicted scientific breakthroughs from various perspec-
tives, mainly using bibliometric and machine learning methods. Although considerable 
efforts have been dedicated to detecting such discoveries, several limitations remain. First, 
regarding feature selection to predict scientific breakthroughs, previous studies have con-
centrated more on ex-post measures based on citation-related features. However, the fac-
tors associated with breakthroughs have not been fully investigated. To identify potential 
factors associated with breakthroughs, we adopt the IPOO model comprising four key 
dimensions: input, process, output, and outcome. Specifically, we incorporate new features 
including combination recency, impact, novelty, and homogeneity of knowledge inputs in 
a paper. We also incorporate important antecedents such as researchers’ knowledge base 
and experience. Previous studies have identified these factors as influencing breakthrough 
ideas. Ignoring such factors may limit the accuracy of scientific breakthrough predictions.

The second limitation is that machine learning algorithms are generally black-box mod-
els and lack adequate interpretability to elucidate how the prediction is made. Thus, previ-
ous interpretable machine learning models to predict breakthroughs are limited and have 
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garnered little attention. This study addresses these research gaps and endeavors to inter-
pret the black-box nature of machine learning in predicting scientific breakthroughs using 
the SHAP approach. Specifically, we analyze feature contributions to identify important 
predictors. We also reveal previously uncovered relationships between the predictors and 
scientific breakthroughs.

Another limitation is that using highly cited achievements to predict scientific break-
throughs may lead to a biased sample, making the model and results less reliable. Citations 
are subject to bias, as they are influenced by many factors that are unrelated to the content 
of the paper (Lyu et al., 2021b). For example, several scholars have identified the “Mat-
thew effect” or “Nobel prize effect” indicating that eminent scientists’ or laureates’ pub-
lications are usually given more credit (Dong et al., 2023; Frandsen & Nicolaisen, 2013; 
Liao, 2021). Therefore, adopting a percentile approach that operationalizes breakthroughs 
as highly cited papers is not appropriate, such as identifying the 0.1%, 1%, or 10% most 
cited publications. Determining whether a work is a breakthrough requires the judgement 
of peers (Min et  al., 2021a; Schneider & Costas, 2017). Our study considers prize-win-
ning publications as the gold standard for breakthroughs. However, an expanded dataset of 
Nobel prize-winning and Lasker prize-winning publications can serve as a supplement to 
the data on scientific breakthroughs.

Data construction

Works that are recognized by the scientific community and authoritative organizations in 
the form of a prize or honor can generally be considered scientific breakthroughs (Muga-
bushaka et  al., 2020). In our study, prize-winning papers, including Nobel and Lasker 
prize-winning papers, are regarded as ground-truth scientific breakthroughs. These prize-
winning papers have not only made original contributions to the stock of knowledge, which 
is one of the foundations on which they are rewarded (Mugabushaka et al., 2020; Schneider 
& Costas, 2017), but they have also had a profound impact on science and society.

The steps for data collection are as follows. We first collected Nobel prize-winning and 
Lasker prize-winning papers. Specifically, Nobel prize-winning papers were drawn from 
the dataset constructed by Li et al. (2019a), which includes 545 Nobel laureates with 874 
prize-winning papers from 1900 to 2016 in the fields of physics, chemistry, and medicine. 
Details of each prize-winning paper including the “Laureate name,” “Title,” and “Jour-
nal” are available at https://​datav​erse.​harva​rd.​edu/. The Lasker prize-winning papers were 
crawled from the official website (see https://​laske​rfoun​dation.​org/​all-​awards-​winne​rs/), 
which lists selected publications for each Lasker winner from 1998 to 2022. A total of 107 
Lasker winners with 661 prize-winning papers were obtained from the website. It should 
be acknowledged that nineteen individuals have been awarded both the Nobel and Lasker 
prizes, so their Nobel or Lasker prize-winning papers were merged in the collective body 
of the author’s papers.1

In the second step, we linked the available Nobel and Lasker prize-winning papers to 
the PubMed Knowledge Graph (PKG) dataset (Xu et al., 2020) to access the bibliographic 

1  The 19 winners are: David Baltimore, Thomas C. Südhof, John Gurdon, Shinya Yamanaka, Ralph M. 
Steinman, Elizabeth H. Blackburn, Carol W. Greider, Jack W. Szostak, James Rothman, Randy Schekman, 
Mario Capecchi, Oliver Smithies, Robert Edwards, Aaron Ciechanover, Avram Hershko, Sydney Brenner, 
Roderick MacKinnon, Lee Hartwell, Paul Nurse.

https://dataverse.harvard.edu/
https://laskerfoundation.org/all-awards-winners/
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information of each paper. For each paper, the unique PMID (a unique identifier for each 
paper) was obtained by manually matching and checking with the PKG dataset accord-
ing to the title, publication year, journal, and author list. Our dataset included 952 award-
winning publications from 305 laureates with 855 unique breakthrough papers. Figure 1 
presents the distribution of winning-prize papers annually from 1910 to 2019.

In the third stage, we systematically matched each breakthrough paper with a set of non-
breakthrough counterparts based on established practices in the science of science. Spe-
cifically, we adopted two well-established criteria from prior literature: (1) selecting non-
award-winning papers authored by the same researcher (Capponi et al., 2022); (2) pairing 
breakthrough papers with non-breakthrough papers published in the same journal and year 
(Min et al., 2021a; Wei et al., 2023). Based on these criteria, we constructed two datasets. 
When determining the ratio of scientific breakthroughs to non-breakthroughs, we follow 
previous empirical studies (Wang et al., 2023a; Wolcott et al., 2016) and set the ratio to 
approximately 1:5, meaning that at least five non-breakthrough papers are matched to each 
breakthrough paper.

Methodology

We begin by generating a set of features to predict scientific breakthroughs within the 
IPOO framework: input-related, process-related, output-related, and outcome-related fea-
tures. We then introduce the data splitting, data pre-processing process and oversampling, 
and the machine learning models used in our study. Finally, we describe SHapley Additive 
exPlanations (SHAP) and provide explanations for the best identification model. The over-
all process of the machine-learning-based SHAP approach is shown in Fig. 2.

Feature selection framework

The Input-Process-Output-Outcome (IPOO) model has been adopted as a systematic theo-
retical framework for performance evaluation across various fields (Cammarano et  al., 
2022; Choi & Choi, 2014; Ferreira et al., 2018; Hsu et al., 2020). It embodies a “systems 
view” that conceptualizes performance indicators into four stages: input, process, output, 
and outcome (Cammarano et al., 2022; Choi & Choi, 2014). Building on this conceptual 

Fig. 1   Distribution of prize-
winning papers
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foundation, we posit that scientific practice can also be considered a system (Winnink et al., 
2019). Therefore, we employ the IPOO model to uncover the predictive features associated 
with scientific breakthroughs and then structure the resulting typology of features accord-
ing to these four dimensions.

Inputs are antecedent factors that are the “raw materials” or resources used in the 
subsequent processes (de Carvalho et al., 2017). Knowledge resources are the key inputs 
for future innovation (Cammarano et  al., 2022; Chen et  al., 2021). In scientific practice, 
it is widely acknowledged that new ideas rarely come from nothing but, rather, scientists 
recombine different streams of existing knowledge (Hur & Oh, 2021; Liang et al., 2020; 
Mukherjee et al., 2017). The fundamental bits of knowledge constituting an innovative idea 
(i.e., prior knowledge on which the new idea is built) are the “raw materials” or “ingredi-
ents” that innovators combine to form outputs (Petruzzelli et  al., 2018). In other words, 
prior knowledge is the key input that affects the generation of new ideas (Heeley & Jacob-
son, 2008). In particular, the characteristics of prior knowledge have been identified as cru-
cial determinants of innovation success (Heeley & Jacobson, 2008; Papazoglou & Nelles, 
2023). Previous studies have confirmed that the amount (Schoenmakers & Duysters, 2010), 
recency (Katila, 2002; Liang et al., 2020; Nerkar, 2003; Papazoglou & Nelles, 2023; Petru-
zzelli et al., 2018), impact (Kwon & Geum, 2020; Mukherjee et al., 2017), combination 
novelty (Lin et al., 2022; Wang et al., 2017), and homogeneity (Hur & Oh, 2021) of prior 
knowledge can lead to varying levels of innovation performance. Therefore, we consider 
these five factors within this dimension.

Fig. 2   The methodology framework
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Processes refer to the transformation of these inputs into meaningful outputs (Marks 
et al., 2001). In the context of scientific research, processes are related to the innovation 
activities carried out or implemented to achieve the goals of new discoveries. Processes 
are usually associated with creation, and innovators are seen as the heart of innovative pro-
cesses (Jones, 2009; Lee et al., 2015; Wagner et al., 2011). Integrating various knowledge 
sources and developing logical linkages are usually accomplished by members of a team 
(Dahlin et  al., 2005; Porter & Rafols, 2009). Therefore, team members play a vital role 
in driving innovative outputs, and their diverse characteristics contribute to different lev-
els of innovation performance (Ma et al., 2023). Previous studies have investigated factors 
of knowledge-producing teams that are associated with innovative discoveries. These fac-
tors which include (1) team composition (e.g., gender, career age, and organizational back-
ground) (Ao et al., 2023; Li et al., 2019b; Yang et al., 2022); (2) team structure (Xu et al., 
2022a, 2022b); (3) team collaboration, including collaboration size, inter-institutional or 
international collaboration, and collaboration freshness (Lyu et al., 2021a; Wu et al., 2019; 
Zeng et al., 2021); (4) the strategies for selecting the topic (e.g., diversity, popularity and 
novelty) (Chai & Menon, 2019; Ruan et al., 2023); (5) team members’ knowledge variety 
and heterogeneity (Huo et al., 2019; Ma et al., 2023); (6) team members’ productivity and 
citations (Wang et al., 2012, 2019a); (7) team members’ social ties (Wang et al., 2023b), 
and (8) funding received (Lyu et al., 2021a). Given this evidence, we consider these factors 
within the dimension, as they have been shown to be supportive conditions for innovative 
outputs.

Outputs are the final results produced by the system (MacCuspie et  al., 2014). The 
innovative outputs in the context of scientific research usually take the form of papers pub-
lished in journals. Within this dimension, we take into consideration detailed paper-related 
and journal-related factors (Tahamtan et al., 2016; Wang et al., 2012).

Outcomes refer to the effects generated by these outputs. In the present study, outcome 
indicators are related to innovation performance, which encompasses two dimensions: out-
put impact and disruption (Wei et al., 2023). Previous studies have demonstrated that inno-
vative outputs exhibit varying levels of performance, not only in terms of their impact (Min 
et  al., 2021a, 2021b; Schneider & Costas, 2017; Wang et  al., 2012; Winnink & Tijssen, 
2015; Winnink et al., 2019), but also in their potential to disrupt or reshape future trajec-
tories (Funk & Owen-Smith, 2017; Wu et al., 2019). Consequently, within this dimension, 
we integrate these factors into our feature set. Table 1 provides an overview of the features 
used in our study.

Data splitting

Sample selection. We excluded papers based on the following exclusion criteria to ensure 
the computability of features: (1) published after 2016 to ensure that each paper has a 
5-year citation time window since the PKG dataset only covers the complete citation infor-
mation up until 2019; (2) have fewer than two references since our combination novelty 
and homogeneity measures {X4, X6} cannot be computed with fewer than two references; 
or (3) have fewer than two citations in the first five years after publication since the cita-
tion network-related indicators {X52-X59} cannot be constructed. We finally obtained 
756 breakthrough papers and 4219 non-breakthrough papers in Dataset 1, and 765 break-
through papers and 3791 non-breakthrough counterparts in Dataset 2.

Data splitting. In this phase, we performed a stratified split of the dataset into training-
validation data (90% of the total data) and test data (10% of the total data). The former was 
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utilized for hyperparameter optimization, while the latter was used to evaluate the final 
performance of the machine learning models. Specifically, within the training-validation 
set, all parameter combinations were exhaustively explored using a tenfold cross-valida-
tion procedure. In each loop, one fold served as the validation set and the other folds were 
employed as the training set. The optimal hyperparameter set was selected based on the 
highest mean F1 score across validation folds.

Data pre‑processing and data oversampling

The following strategies were executed:
Missing values imputation. We checked for samples containing missing values. We 

deleted indicators with a substantial number of missing values, either in the positive class 
or both classes. For continuous features, the remaining indicators were dealt with K-nearest 
neighbor (KNN) imputation, which has been a widely used algorithm to handle missing 
values (Jadhav et al., 2019). The core idea of this method is to impute values calculated 
from the values of the k nearest neighbors. We set the default parameters using the Euclid-
ean distance function and k = 5 to select the nearest neighbors and calculated the average 
for imputation. In addition, for categorical variables, we encoded the categorical data col-
umns into one-hot vectors.

Data normalization. Data normalization is an essential pre-processing step to improve 
the data quality in machine learning studies (Singh & Singh, 2020). In this study, each 
continuous feature was normalized using the max–min normalization method, which was 
transformed into a value within the range of [0, 1].

Data oversampling. Our dataset presented an imbalanced classification problem in 
that the positive class had a much smaller sample than the negative class. Balance can 
be achieved by increasing the number of samples in the positive class (over-sampling) 
(Elreedy & Atiya, 2019). We adopted the synthetic minority over-sampling technique for 
nominal continuous features (SMOTE-NC) to balance the number of samples in each class 
by generating synthetic data for the minority class (Chawla et al., 2002). This technique 
was selected because it is an effective method that enhances performance on various imbal-
ance ratios of data (Doan et al., 2022), and it can handle both numerical and categorical 
features well in our dataset.

Model selection and evaluation

Extreme gradient boosting – XGBoost

XGBoost is an optimized implementation of the ensemble method gradient boosting deci-
sion tree (GBDT), which was designed by Chen and Guestrin (2016). XGBoost is a sig-
nificant improvement as it uses the second-order Taylor expansion to approximate the loss 
function, which makes the converge faster. Another improved feature is that it avoids the 
over-fitting problem by incorporating a regularization term into the objective function. The 
core of the algorithm is to achieve a prime solution of the objective function, which is 
expressed in Eq. 1.

(1)Objective =
∑

i

L
(
yi, ŷi

)
+

∑

k

Ω
(
fk
)



Scientometrics	

The first term is the loss function that denotes the difference between the predicted 
and actual values, while the second term serves as the regularization term that represents 
the complexity of the model. XGBoost has been utilized extensively in various fields to 
address challenging tasks due to its high accuracy and fast processing time (Ekanayake 
et al., 2022; Wang et al., 2022). Consequently, we employed the XGBoost model in this 
study to develop a prediction model for scientific breakthroughs by leveraging its high pre-
dictive performance in classification tasks (Joung & Kim., 2023; Ma et  al., 2022; Parsa 
et al., 2020).

Baseline models

To demonstrate the superiority of the XGBoost model (XGB), we compared it with other 
typical machine learning models, including logistic regression (LR), random forest (RF), 
support vector machine (SVM), multilayer perceptron (MLP), decision tree (DT), and Ada-
Boost (ADB). The first four algorithms have been employed in previous studies to identify 
scientific breakthroughs (Li et al., 2022; Min et al., 2021a; Wolcott et al., 2016), and the 
last two tree-based models have been commonly used to build classification models (Ma 
et al., 2022).

We further compared the results with Min et  al.’s (2021a) study that used a machine 
learning model to predict Nobel prize-winning papers. In their study, 116 Nobel prize-
winning papers and their counterpart papers were used in the logistic model. The model 
included nine features that quantify the structure of citation networks: X52-X59.

Large language models (LLMs)

We also conducted additional experiments using large language models (LLMs). We 
employed frozen local LLMs, including Llama‑3.2‑1B/3B and Qwen3‑1.7B/4B, and 
trained them with a lightweight fusion head for the downstream prediction task. Regard-
ing the data preprocessing, we took the same setting as previous machine learning models. 
Then, all features were projected through a multilayer perceptron to align with the hidden 
dimensionality of the LLM. The projected representation was then fused with the LLM’s 
final-layer output via cross‑attention, and the fused embedding was fed into a lightweight 
MLP classifier. During training, we optimized only the projection, fusion, and classifier 
parameters using AdamW, while keeping the LLM backbone frozen. This design aimed 
to leverage the semantic richness of the LLM embeddings without incurring the cost chal-
lenges of fine-tuning the entire model.

Model evaluation

Predicting scientific breakthroughs is a binary classification task. We adopted the F1 score 
and the area under the receiver operating characteristic (ROC) as the main metrics to eval-
uate the performance of a classification task (Ma et al., 2022; Ragini et al., 2018).

The F1 score is the harmonic average of precision and recall using the following 
formula:

(2)F1 = 2 ⋅
Precision ⋅ Recall

Precision + Recall



	 Scientometrics

where precision represents the ratio of the number of samples in the positive class to the 
number of samples that are predicted as the positive class. Recall denotes the ratio of the 
number of samples that are correctly predicted as the positive class to the total number of 
samples in that category, calculated as:

where TP indicates the number of samples with the correct classification to the positive 
class. FP denotes the incorrect classification to the positive class, and FN represents the 
incorrect classification to the negative class.

The ROC was created on a space where the false positive rate (FPR) is on the X coor-
dinate, and the true positive rate (TPR) is on the Y coordinate at various threshold settings. 
The area under the ROC curve (AUC) was used to evaluate the performance of the model, 
ranging from [0, 1]. The closer the value is to 1, the better the prediction of the model. 
AUC = 0.5 represents the result of random guessing.

Model interpretation: SHapley Additive exPlanations (SHAP)

SHAP is an effective way to explain the output of machine learning models based on the 
game theoretic approach proposed by Shapley and Shubik (1954). It was first proposed by 
Lundberg and Lee (2017). For each sample, it assigns a SHAP value to each input vari-
able (feature) to represent its contribution to model prediction. For an input dataset of size 
N ×M ( N denotes the number of samples, and M represents the number of features), the 
weighted sum of the marginal contribution is calculated when the feature is added, produc-
ing an N ×M matrix with the SHAP values. It is expressed as:

where F is the set of all features { X1 , X2 , … Xm }. F�{Xi} represents the set of features of F 
without the feature { Xi }. S are all feature subsets of F�{Xi} . |M| is the total number of fea-
tures in M while |S| is the total number of features in S . The model f

(
S ∪ {Xi}

)
 is trained 

with the set of features S and { Xi }, and the model f (S) is trained with the feature set S . We 
explore the possible relationship between the feature value and the impact on the model 
prediction with SHAP.

Results

Prediction results

In this section, the performance of seven machine learning models is evaluated on the 
test set to investigate whether XGB outperforms other widely used models. The results in 
Table 2 show the performance measures: F1 score, precision, and recall for all models. The 
recall scores of XGB are 0.636 and 0.623 for Dataset 1 and Dataset 2, respectively, ranking 

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)� =
∑

S⊆F�Xi

|S|!(|M| − |S| − 1)!

|M|!
(
f
(
S ∪ Xi

)
− f (S)

)
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1st. In terms of F1 scores, XGB achieves the best performance with scores of 0.613 and 
0.611, respectively. Since the DT is a weak learner, it yields relatively weaker predictions 
than the tree-based algorithms, namely RF, ADB, and XGB. The ensemble learning meth-
ods, including boosting (ADB, XGB) and bagging (RF) algorithms, provide an improved 
version of the classic DT and are more accurate and robust than individual learning meth-
ods. In addition, as displayed in Fig.  3, XGB performs quite well in terms of the AUC 
score, ranking 2nd in Dataset 1 and 1st in Dataset 2 (0.898 and 0.880, respectively). 

Overall, based on the evaluation scores, our results imply the potential of XGB in the 
breakthrough identification task across both datasets. Additionally, we found differences in 
the evaluation scores between the two datasets, which suggests that the construction of the 
non-breakthrough class affects prediction accuracy, with Dataset 1 demonstrating superior 
performance. Our study indicates that the model’s performance depends not only on the 
selection of algorithm but also on the construction method of negative samples. Compared 
with Dataset 1, Dataset 2 was designed to include non-breakthrough papers that are more 
comparable to breakthroughs in terms of journal-related features (e.g., journal impact), 

Table 2   The performance of machine learning models

Dataset 1 Dataset 2

Models F1 score Precision Recall AUC​ F1 score Precision Recall AUC​

LR 0.584 0.667 0.519 0.874 0.497 0.433 0.584 0.811
DT 0.531 0.576 0.494 0.852 0.467 0.383 0.597 0.777
RF 0.559 0.606 0.519 0.900 0.531 0.470 0.610 0.843
ADB 0.591 0.709 0.506 0.897 0.511 0.455 0.584 0.841
MLP 0.472 0.630 0.377 0.808 0.452 0.385 0.545 0.768
SVM 0.577 0.597 0.558 0.874 0.520 0.460 0.597 0.814
XGB 0.613 0.590 0.636 0.898 0.611 0.600 0.623 0.880

Fig. 3   ROC curves of the seven algorithms (Dataset 1 and Dataset 2)
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which may reduce the distinctions between the breakthrough and non-breakthrough groups. 
The relatively smaller differences between the two classes in these features may have led 
to relatively lower predictive accuracy for models based on Dataset 2. Future studies could 
further examine the robustness of our findings under different sampling strategy.

Comparison with related work

The results are compared with the baseline model (with nine features) constructed by Min 
et al. (2021a). Figure 4 presents the changes in performance measures of our model relative 
to the baseline model in the two datasets. In Dataset 1 (orange bars), while MLP yields a 
lower F1 score compared to the baseline, all other algorithms demonstrate superior per-
formance. Notably, XGB achieves remarkable improvements with F1 score increases of 
12.5%, and recall score increases of 13%. In Dataset 2 (green bars), the F1 and AUC scores 
of all models demonstrate significant improvement over the baseline, with the exception 
of MLP. Notably, XGB achieves the greatest enhancement with an F1 score increase of 
14.8% and an AUC score increase of 9.6%. In summary, our study achieves predictions 

Fig. 4   Comparison of F1, precision, recall, and AUC of predictions with related work (Dataset 1 and Data-
set 2)
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with acceptable accuracy compared to Min et  al. (2021a), with XGB achieving superior 
improvements across evaluation metrics in both datasets.

It should be noted that when using the same baseline model, our results are higher than 
those of Min et al. (2021a) with an AUC of 0.619. The differences are likely attributed to 
the following reason. The dataset of non-breakthroughs in Min et al.’s (2021a) study was 
constructed from papers that received approximately equivalent citation counts as break-
throughs, which means that one of the features, citation counts, showed limited predictive 
power in their model.

Comparison with LLMs

Table 3 reports the results of four LLMs, including Llama-1B/3B and Qwen3-1.7B/4B. As 
shown in Table 3, QWen3-1.7B achieves the best recall and F1 values in Dataset 1, with a 
recall score of 0.61 and an F1 score of 0.584, respectively. The AUC results further con-
firm that QWen3-1.7B performs well, ranking first among all models. In Dataset 2, Llama-
3B demonstrates the best performance in terms of F1 and AUC values, while Llama-1B 
achieves the highest recall (0.805). Comparing the classification results in Tables 2 and 3, 
we find that in Dataset 1, the LLMs generally achieve lower evaluation scores than tradi-
tional machine learning models in terms of F1 and AUC scores, except for DT and MLP. 
Notably, the best-performing XGB surpasses QWen3-1.7B. However, both Llama-3B and 
QWen3-1.7B achieve higher recall scores than all other traditional machine learning mod-
els, except XGB. In Dataset 2, we find that SVM, RF, ADB and XGB perform better than 
LLMs in terms of F1 and AUC scores. Both Llama-1B/3B achieve higher recall scores 
than all seven traditional machine learning models.

In summary, there are several main findings: (1) In both datasets, XGB performs best 
among traditional machine learning models, and also surpasses LLMs; (2) LLMs (Qwen3-
1.7B in Dataset 1 and Llama-1B in Dataset 2) have higher recall scores than the majority of 
traditional machine learning methods; and (3) Similar to the results of traditional machine 
learning models, LLMs demonstrate superior performance in Dataset 1 compared to Data-
set 2, depending on the construction of the non-breakthrough class.

Model interpretability

For a global explanation, we employed the XGBoost model’s built-in feature importance 
analysis to obtain the feature importance ranking. The results revealed the extent to which 
each feature impacts the model prediction. Table 4 lists the top ten features, with Ni identi-
fied as the most important feature. These top features fall into four categories: paper impact 

Table 3   The performance of LLMs

Dataset 1 Dataset 2

Models F1 score Precision Recall AUC​ F1 score Precision Recall AUC​

Llama-1B 0.544 0.571 0.520 0.865 0.5 0.363 0.805 0.820
Llama-3B 0.548 0.506 0.597 0.867 0.505 0.413 0.649 0.821
QWen3-1.7B 0.584 0.560 0.610 0.879 0.455 0.404 0.520 0.810
QWen3-4B 0.557 0.619 0.507 0.869 0.503 0.457 0.558 0.817
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( CNedge , I_total , CNdegree , and I_self  ), paper disruption ( Ni ), team experience ( MA_H , 
MA_citation , MA_num and FA_H ), and journal impact ( JIF ). However, XGBoost mod-
el’s built-in feature importance analysis cannot interpret the relationship between the fea-
tures and model prediction. Therefore, we further used the SHAP approach to interpret the 
model. We conducted both SHAP importance analysis and SHAP dependency analysis to 
explore the possible relationship between the feature value and the impact on the model 
prediction. The corresponding results are provided in Online Appendix B, which supple-
ments the XGBoost built-in feature importance analysis.

In addition to the global explanations mentioned above, we adopted SHAP methods to 
provide local explanations for each individual sample. Figure 5 illustrates the explanations 
for the instance obtained from the SHAP waterfall plot. SHAP values decompose the pre-
diction of the model into the sum of the contributions of each input variable. All vari-
ables (features) collectively contribute to the deviation of prediction from the base value, 
ultimately determining whether the output is breakthrough or non-breakthrough. Red ones 
denote variables that push the prediction toward breakthrough, while blue ones represent 

Table 4   The top ten important 
features

Rank Feature Importance

1 Ni 0.159
2 MA_H 0.039
3 CNedge 0.036
4 MA_citation 0.036
5 MA_num 0.031
6 I_total 0.031
7 JIF 0.021
8 CNdegree 0.020
9 I_self 0.019
10 FA_H 0.018

Fig. 5   The most important SHAP local explanation
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variables that influence the prediction toward non-breakthrough. The length of the bar 
reflects the magnitude of the contribution to the prediction.

Following Saarela and Kaerkkaeinen (2020), we show the most important local expla-
nation for the sample. This explanation has the highest predicted probability to be a break-
through and was actually a breakthrough (true positive). The sample is from Okita et al. 
(2007), in which Shinya Yamanaka was honored with the 2009 Lasker Basic Medical 
Research Award for nuclear reprogramming discoveries. First, our analysis shows that the 
relatively high CNdegree plays the most significant predictive role in this case, exhibiting 
positive effects on the prediction of a breakthrough (SHAP = 1.85). In addition, the rela-
tively high values of Ni (171), I_self  (44), CNedge (9,887), and I_total (1,166) collectively 
lead to further divergence from the base value, as these factors exhibit positive impacts on 
the model. These top-ranked features indicate that outcome-related features dominate the 
prediction in this individual case. In addition, a publication in Nature emerged as another 
significant feature with a SHAP value of 0.50. For other features, MA_citation , R_impact 
and R_cov have opposite effects (SHAP = −0.57, −0.47 and −0.38, respectively), which 
pushes the model away from the positive class. In summary, when taking all feature contri-
butions into consideration during the prediction process, the model accurately predicts the 
breakthrough classification.

Discussion and conclusion

Identifying breakthrough research is a significant and challenging issue not only for scien-
tists in the scientific community, but also for R&D management and policymakers. This 
paper presents an interpretable machine learning model to predict scientific breakthroughs 
utilizing a new dataset of Nobel and Lasker prize-winning publications. Specifically, we 
designed an upgraded framework that integrates possible factors that are associated with 
breakthroughs with the IPOO perspective. Traditional machine learning models and large 
language models are adopted to evaluate prediction performance. We also applied the 
XGBoost model’s built-in importance method and SHAP to identify critical factors and 
quantify their influence on the model. This approach improves the transparency and inter-
pretability of the prediction and provides new insights.

Main conclusion

Research has begun to highlight the importance of identifying scientific breakthroughs, 
regarded as major innovations in the advancement of science. The key findings of this 
study are as follows:

(1) XGBoost exhibits the best predictive performance among traditional machine learn-
ing methods in two datasets.
(2) Compared with the results of the baseline model constructed by Min et al. (2021a), 
our study achieved better accuracy in identifying scientific breakthroughs. We found 
that XGBoost demonstrates remarkable improvements of 12.5% and 14.8% in the F1 
score in the two datasets, respectively.
(3) Qwen3-1.7B and Llama-3B are the best models among the LLMs in Dataset 1 and 
Dataset 2, respectively. In terms of overall performance measured by the F1 score, tra-
ditional machine learning models perform better than LLMs, except for DT and MLP. 
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LLMs (Qwen3-1.7B in Dataset1 and Llama-1B in Dataset 2) have higher recall scores 
than most traditional machine learning methods.
(4) The XGBoost model’s built-in feature importance analysis suggests that Ni , MA_H, 
CNedge , MA_citation, MA_num , I_total , JIF , CNdegree , I_self  and FA_H are the most 
influential features.
(5) We compared the consistency of the top contributing features using SHAP analysis, 
logistic regression analysis, and the model’s built-in feature importance analysis. First, 
the results show that Ni plays the most important role and exhibits a positive correlation 
with the prediction of breakthroughs. This finding serves as the foundation for exploring 
the capabilities of the Ni indicator in subsequent studies. Second, Ni , I_self  , CNedge , 
MA_H , and I_total consistently appear and are ranked among the top features across 
the three methods. In addition, the logistic regression analysis shows that approximately 
85% of the features that are statistically significant exhibit directional consistency with 
SHAP values (for details, please refer to Online Appendix B-D).

Our study built upon the work of Min et  al. (2021a) by extending the set of observ-
able features and offering a more in-depth interpretation of their interrelationships with 
scientific breakthroughs. The findings demonstrate that XGBoost achieved the best per-
formance, with F1 scores of 0.613 and 0.611 for Dataset 1 and Dataset 2, respectively. 
Although the prediction results are better than random guessing and that of Min et  al. 
(2021a), there is still room for improvement in the prediction of scientific breakthroughs. 
Although opportunities remain for further improvement, our results demonstrate that the 
features we constructed are capable of capturing important aspects of the underlying pat-
terns associated with scientific breakthroughs. Importantly, the features we employed align 
with those that have been widely adopted in citation prediction studies, including predict-
ing citation counts (Bai et  al., 2019; Ruan et  al., 2020; Zhang et  al., 2021), technologi-
cal impact (Gao et al., 2024), clinical citations (Liu et al., 2024), and the identification of 
highly cited papers (Hu et  al., 2023; Wang et  al., 2019a, 2019b). While citation predic-
tion tasks often achieve AUC scores exceeding 0.86 or F1 scores above 0.69 (Akella et al., 
2021; Fu & Aliferis, 2010; Hu et al., 2023), breakthrough prediction presents a fundamen-
tally different and more challenging problem. Citation outcomes are heavily influenced by 
extrinsic factors, such as author reputation, journal prestige, or network visibility (Fu & 
Aliferis, 2010), which are relatively easier to quantify. In contrast, breakthroughs are likely 
driven more by intrinsic characteristics, including the originality, quality, and transforma-
tive potential of the research itself, which are more difficult to observe and operational-
ize. Accordingly, although our study focuses on observable, bibliometric-based features, 
we recognize that enhancing the prediction of breakthroughs may require incorporating 
richer representations of research content. Future work could integrate semantically inter-
pretable patterns derived from the full texts of articles, going beyond traditional metadata 
approaches (Beranová et al., 2022), thereby further advancing predictive performance.

Theoretical implications

This study provides a novel lens for predicting scientific innovation grounded in the the-
oretical foundations of the IPOO model. While previous studies have demonstrated the 
effectiveness of the IPOO model in developing performance evaluation frameworks, its 
potential for scientific breakthrough prediction remains underexplored. Our study makes 
a primary theoretical contribution by establishing a pathway that demonstrates how the 
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IPOO model can be operationalized for breakthrough prediction. Through this lens, we 
decompose the relevant factors into knowledge input, team process, innovative output, and 
innovative outcome dimensions, and further identify potential factors within each dimen-
sion. By empirically validating our framework on two datasets, we advance our under-
standing of the mechanisms underlying scientific breakthroughs and reveal the most sig-
nificant predictors influencing breakthroughs.

Another implication is that, unlike existing studies, we employ the XGBoost-SHAP 
machine learning approach to identify scientific breakthroughs. First, the findings demon-
strate the effectiveness of the XGBoost model and show that it is capable of higher pre-
dictive accuracy. In addition, the findings related to feature contributions indicate that 
outcome-related factors ( Ni , CNedge , I_total , CNdegree , and I_self  ), team experience 
( MA_H , MA_citation , MA_num and FA_H ), and journal impact ( JIF ) play crucial roles 
in identifying breakthroughs. In addition, the findings reveal several new relationships. For 
example, Ni is positively correlated with the prediction of breakthroughs.

Practical implications

This study provides several practical implications for science policymakers and academic 
evaluators. First, our results show that machine learning methods are more effective in 
detecting scientific breakthroughs. Given the exponential growth of scholarly publications 
each year, an automated identification method may be a preferable way for databases to 
identify potential excellent papers. For example, the “Clarivate Citation Laureates” are 
selected based on the paper and citations in the Web of Science platform. They could be 
considered candidates to win a Nobel prize. Similarly, researchers can leverage well-estab-
lished research infrastructures with open datasets containing available bibliographic data of 
publications, such as the PKG dataset (Xu et al., 2020) and the SciSciNet (Lin et al., 2023), 
which initially offers commonly used metrics. The method proposed in our study may help 
researchers identify potential outstanding papers in the database and effectively assist in 
the evaluation of research papers.

Our findings also provide potential quantitative guidance for identifying ground-break-
ing discoveries using an alternative perspective. A wealth of research has been dedicated 
to measuring significant innovations in science using ex-post measures, including cita-
tion count-based and citation network-based approaches. Our study suggests that Ni is the 
strongest predictor in ex-post measures. This finding suggests the potential utility of the 
measurs in future applications. However, future work should verify our results.

Limitations and future directions

This study is not without limitations. First, the calculation of features is dependent on the 
bibliographic information in the PKG database. Consequently, the results are influenced 
by the quality of the database. For example, citation-based indicators are intricately related 
to the coverage and accuracy of the citation data in the database. Second, we acknowledge 
that many unobservable factors, such as the quality or originality of the discovery, influ-
ence the prediction of breakthroughs. However, they were not incorporated into our study. 
Examining these factors is challenging, as it requires an in-depth analysis of the content 
of articles. Consequently, our study is limited to observable factors that have been quanti-
fied and examined in previous studies. Therefore, the scope of predictive features consid-
ered in our model is constrained. Future endeavors should combine both literature-related 
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features and content-related features to enhance the detection of breakthrough discoveries. 
In addition, for feasibility, we adopted a 1:5 ratio of scientific breakthroughs to non-break-
throughs, which is far less imbalanced than the real-world distribution. This difference 
may affect the generalizability of the results under more realistic distributions. Future work 
could evaluate the method under more realistic ratios on larger datasets.
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